GDR OERA - Organic Electronics for new era
GDR 3368


Le GDR Organic Electronics for the new era (OERA) rassemble 5 thématiques dans lesquelles les propriétés optoélectroniques, électroniques/ioniques, ou électromécaniques des matériaux organiques en couche mince sont explorées : Etude et modélisation des propriétés fondamentales des matériaux organiques semi-conducteurs et conducteurs ; Photovoltaïque et photo-détecteur organique ; Eclairage et LASER organique ; Bioélectronique & Biocapteur & BIO-MEMs ; Electroniques extensibles & textiles intelligents. Une sixième thématique soulevée par des considérations socio-économiques sera mise en place et visera une animation autour de la commercialisation des matériaux et dispositifs OERA.

Exploring Charge Transport in High-Temperature Polymorphism of ITIC Derivatives in Simple Processed Unipolar Bottom Contact Organic Field-Effect Transistor

We show that the electron mobility in films based on different derivatives of the ITIC family (ITIC, ITIC-Th and ITIC-4F) is strongly influenced by polymorphism; polymorphism specific to each molecule and depending on the annealing temperature applied to thin films. This leads to a strong increase in electron mobility compared to un-annealed films, which correlates with changes in molecular aggregation, crystallinity and domain orientation as well as intermolecular electronic coupling. Compared to the alkyl chain substitution used in ITIC-Th, fluorination in ITIC-4F leads to the highest electron mobility with 3.7×10-2 cm2/V.s at 200°C, due to the formation of highly ordered J-aggregates with enhanced intermolecular interaction.

Electrical and Mechanical Properties of Intrinsically Flexible and Stretchable PEDOT Polymers for Thermotherapy

For wearable applications such as electronic skin and biosensors, stretchable conductors are required. Owing to its high conductivity, good flexibility, low cost, and ease of processing, PEDOT appears as a promising candidate. However, destructive cracks come out above 10% strain in the case of PEDOT:PSS, the most common form of PEDOT. This article presents a different approach to obtain highly conductive and stretchable PEDOT materials based on doping with small counteranions.

Encoding information on the excited state of a molecular spin chain

A novel nanotechnological process is used to study spin-polarized transport across a molecular spin chain within a solid-state device. According to experiment and theory, electrically exciting the spin chain generates a specific magnetoresistance signal. This quantum encoding of information lays the groundwork for information transmission across the spin chain and should stimulate quantum prospects for antiferromagnetic spintronics and oxides electronics.